Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Bioorg Chem ; 146: 107318, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38579613

RESUMEN

Twenty-seven rosmarinic acid derivatives were synthesized, among which compound RA-N8 exhibited the most potent antibacterial ability. The minimum inhibition concentration of RA-N8 against both S. aureus (ATCC 29213) and MRSA (ATCC BAA41 and ATCC 43300) was found to be 6 µg/mL, and RA-N8 killed E. coli (ATCC 25922) at 3 µg/mL in the presence of polymyxin B nonapeptide (PMBN) which increased the permeability of E. coli. RA-N8 exhibited a weak hemolytic effect at the minimum inhibitory concentration. SYTOX Green assay, SEM, and LIVE/DEAD fluorescence staining assay proved that the mode of action of RA-N8 is targeting bacterial cell membranes. Furthermore, no resistance in wildtype S. aureus developed after incubation with RA-N8 for 20 passages. Cytotoxicity studies further demonstrated that RA-N8 is non-toxic to the human normal cell line (HFF1). RA-N8 also exerted potent inhibitory ability against biofilm formation of S. aureus and even collapsed the shaped biofilm.


Asunto(s)
Antibacterianos , Staphylococcus aureus Resistente a Meticilina , Humanos , Antibacterianos/química , Staphylococcus aureus , Ácido Rosmarínico , Escherichia coli , Relación Estructura-Actividad , Pruebas de Sensibilidad Microbiana , Biopelículas
2.
ACS Omega ; 9(8): 9161-9169, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38434906

RESUMEN

We successfully developed a fluorescent drug sensor from clinically relevant New Delhi metallo-ß-lactamase-1 (NDM-1). The F70 residue was chosen to be replaced with a cysteine for conjugation with thiol-reactive fluorescein-5-maleimide to form fluorescent F70Cf, where "f" refers to fluorescein-5-maleimide. Our proteolytic studies of unlabeled F70C and labeled F70Cf monitored by electrospray ionization-mass spectrometry (ESI-MS) revealed that fluorescein-5-maleimide was specifically linked to C70 in 1:1 mole ratio (F70C:fluorophore). Our drug sensor (F70Cf) can detect the ß-lactam antibiotics cefotaxime and cephalothin by giving stronger fluorescence in the initial binding phase and then declining fluorescence signals as a result of the hydrolysis of the antibiotics into acid products. F70Cf can also detect non-ß-lactam inhibitors (e.g., l-captopril, d-captopril, dl-thiorphan, and thanatin). In all cases, F70Cf exhibits stronger fluorescence due to inhibitor binding and subsequently sustained fluorescence signals in a later stage. Native ESI-MS results show that F70Cf can bind to all four inhibitors. Moreover, our drug sensor is compatible with a high-throughput microplate reader and has the capability to perform in vitro drug screening.

3.
Int J Biol Macromol ; 253(Pt 5): 127742, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37923039

RESUMEN

Asparaginase has been traditionally applied for only treating acute lymphoblastic leukemia due to its ability to deplete asparagine. However, its ultimate anticancer potential for treating solid tumors has not yet been unleashed. In this study, we bioengineered Erwinia chrysanthemi asparaginase (ErWT), one of the US Food and Drug Administration-approved types of amino acid depleting enzymes, to achieve double amino acid depletions for treating a solid tumor. We constructed a fusion protein by joining an albumin binding domain (ABD) to ErWT via a linker (GGGGS)5 to achieve ABD-ErS5. The ABD could bind to serum albumin to form an albumin-ABD-ErS5 complex, which could avoid renal clearance and escape from anti-drug antibodies, resulting in a remarkably prolonged elimination half-life of ABD-ErS5. Meanwhile, ABD-ErS5 did not only deplete asparagine but also glutamine for ∼2 weeks. A biweekly administration of ABD-ErS5 (1.5 mg/kg) significantly suppressed tumor growth in an MKN-45 gastric cancer xenograft model, demonstrating a novel approach for treating solid tumor depleting asparagine and glutamine. Multiple administrations of ABD-ErS5 did not cause any noticeable histopathological abnormalities of key organs, suggesting the absence of acute toxicity to mice. Our results suggest ABD-ErS5 is a potential therapeutic candidate for treating gastric cancer.


Asunto(s)
Antineoplásicos , Dickeya chrysanthemi , Neoplasias Gástricas , Humanos , Animales , Ratones , Asparaginasa/genética , Asparaginasa/farmacología , Asparaginasa/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Dickeya chrysanthemi/genética , Dickeya chrysanthemi/metabolismo , Asparagina , Glutamina , Neoplasias Gástricas/tratamiento farmacológico , Enterobacteriaceae/metabolismo , Albúmina Sérica
4.
Int J Mol Sci ; 24(18)2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37762044

RESUMEN

Colorectal cancer (CRC) has been proven to be highly reliant on arginine availability. Limiting arginine-rich foods or treating patients with arginine-depleting enzymes arginine deiminase (ADI) or arginase can suppress colon cancer. However, arginase and ADI are not the best drug candidates for CRC. Ornithine, the product of arginase, can enhance the supply of polyamine, which favors CRC cell growth, while citrulline, the product of ADI, faces the problem of arginine recycling due to the overexpression of argininosuccinate synthetase (ASS). Biosynthetic arginine decarboxylase (ADC), an enzyme that catalyzes the conversion of arginine to agmatine and carbon dioxide, may be a better choice as it combines both arginine depletion and suppression of intracellular polyamine synthesis via its product agmatine. ADC has anti-tumor potential yet has received much less attention than the other two arginine-depleting enzymes. In order to gain a better understanding of ADC, the preparation and the anti-cancer properties of this enzyme were explored in this study. When tested in vitro, ADC inhibited the proliferation of three colorectal cancer cell lines regardless of their ASS cellular expression. In contrast, ADC had a lesser cytotoxic effect on the human foreskin fibroblasts and rat primary hepatocytes. Further in vitro studies revealed that ADC induced S and G2/M phase cell-cycle arrest and apoptosis in HCT116 and LoVo cells. ADC-induced apoptosis in HCT116 cells followed the mitochondrial apoptotic pathway and was caspase-3-dependent. With all results obtained, we suggest that arginine is a potential target for treating colorectal cancer with ADC, and the anti-cancer properties of ADC should be more deeply investigated in the future.


Asunto(s)
Agmatina , Neoplasias del Colon , Humanos , Animales , Ratas , Arginasa , Arginina
5.
PLoS One ; 18(8): e0287253, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37616226

RESUMEN

Pregestational diabetes is highly associated with increased risk of birth defects. We previously reported that the expression of Cyp26a1, the major catabolizing enzyme for controlling retinoic acid (RA) homeostasis, is significantly down-regulated in embryos of diabetic mice, thereby increasing the embryo's susceptibility to malformations caused by RA dysregulation. However, the underlying mechanism for the down-regulation of Cyp26a1 remains unclear. This study aimed to investigate whether elevated maternal blood glucose in the diabetic milieu is a critical factor for the altered Cyp26a1 expression. Streptozotozin-induced diabetic pregnant mice were treated with phlorizin (PHZ) to reduce blood glucose concentrations via induction of renal glucosuria. Embryonic Cyp26a1 expression level, RA catabolic activity and susceptibility to various RA-induced abnormalities were examined. To test the dose-dependent effect of glucose on Cyp26a1 level, early head-fold stage rat embryos of normal pregnancy were cultured in vitro with varying concentrations of D-glucose, followed by quantification of Cyp26a1 transcripts. We found that Cyp26a1 expression, which was down-regulated in diabetic pregnancy, could be normalized under reduced maternal blood glucose level, concomitant with an increase in RA catabolic activity in embryonic tissues. Such normalization could successfully reduce the susceptibility to different RA-induced malformations including caudal regression, cleft palate and renal malformations. The expression level of Cyp26a1 in the embryo was inversely correlated with D-glucose concentrations. Diabetic patients suffer from retinopathy, dermopathy, male infertility and increased cancer risk. Coincidentally, RA dysregulation is also associated with these health problems. Our results provided evidence that elevated glucose can down-regulate Cyp26a1 expression level and disturb RA homeostasis, shedding light on the possibility of affecting the health of diabetic patients via a similar mechanism.


Asunto(s)
Diabetes Mellitus Experimental , Hiperglucemia , Masculino , Femenino , Embarazo , Humanos , Animales , Ratones , Ratas , Glucemia , Ácido Retinoico 4-Hidroxilasa/genética , Glucosa
6.
Int J Mol Sci ; 24(11)2023 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-37298352

RESUMEN

Growing evidence proves that amino acid restriction can reverse obesity by reducing adipose tissue mass. Amino acids are not only the building blocks of proteins but also serve as signaling molecules in multiple biological pathways. The study of adipocytes' response to amino acid level changes is crucial. It has been reported that a low concentration of lysine suppresses lipid accumulation and transcription of several adipogenic genes in 3T3-L1 preadipocytes. However, the detailed lysine-deprivation-induced cellular transcriptomic changes and the altered pathways have yet to be fully studied. Here, using 3T3-L1 cells, we performed RNA sequencing on undifferentiated and differentiated cells, and differentiated cells under a lysine-free environment, and the data were subjected to KEGG enrichment. We found that the differentiation process of 3T3-L1 cells to adipocytes required the large-scale upregulation of metabolic pathways, mainly on the mitochondrial TCA cycle, oxidative phosphorylation, and downregulation of the lysosomal pathway. Single amino acid lysine depletion suppressed differentiation dose dependently. It disrupted the metabolism of cellular amino acids, which could be partially reflected in the changes in amino acid levels in the culture medium. It inhibited the mitochondria respiratory chain and upregulated the lysosomal pathway, which are essential for adipocyte differentiation. We also noticed that cellular interleukin 6 (IL6) expression and medium IL6 level were dramatically increased, which was one of the targets for suppressing adipogenesis induced by lysine depletion. Moreover, we showed that the depletion of some essential amino acids such as methionine and cystine could induce similar phenomena. This suggests that individual amino acid deprivation may share some common pathways. This descriptive study dissects the pathways for adipogenesis and how the cellular transcriptome was altered under lysine depletion.


Asunto(s)
Adipogénesis , Lisina , Ratones , Animales , Adipogénesis/genética , Células 3T3-L1 , Lisina/genética , Interleucina-6/genética , Diferenciación Celular/genética , Perfilación de la Expresión Génica , PPAR gamma/metabolismo
7.
Angew Chem Int Ed Engl ; 62(12): e202218038, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36670048

RESUMEN

The reaction of a series of electron-deficient isoindolium-based allenes with sulfhydryl compounds has been studied, leading to the formation of isoindolium-based vinyl sulfides. The vinyl sulfides generated could be readily converted into the corresponding indanones and amines upon heating at 30-70 °C with good yields up to 61 %. The thermal cleavage reaction of vinyl sulfides was further studied for developing temperature-sensitive systems. Notably, a novel FRET-based fluorescent temperature sensor was designed and synthesized for temperature sensing at 50 °C, giving a 6.5-fold blue fluorescence enhancement. Moreover, chemoselective bioconjugation of cysteine-containing peptides with the isoindolium-based allenes for the construction of multifunctional peptide bioconjugates was investigated. Thermal cleavage of isoindoliums on the modified peptides at 35-70 °C gave indanone bioconjugates with up to >99 % conversion. These results indicated the biocompatibility of this novel temperature-sensitive reaction.


Asunto(s)
Cisteína , Péptidos , Cisteína/química , Fluorescencia , Temperatura , Sulfuros
8.
Biochim Biophys Acta Proteins Proteom ; 1870(10): 140833, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35944887

RESUMEN

Bacteria expressing NDM-1 have been labeled as superbugs because it confers upon them resistance to a broad range of ß-lactam antibiotics. The enzyme has a di­zinc active centre, with the Zn2 site extensively studied. The roles of active-site Zn1 ligand residues are, however, still not fully understood. We carried out structure-function studies using the mutants, H116A, H116N, and H116Q. Zinc content analysis showed that Zn1 binding was weakened by 40 to 60% in the H116 mutants. The enzymatic-activity studies showed that the lower hydrolysis rates were mainly caused by their weaker substrate binding. The catalytic efficiency (kcat/Km) of the mutants followed the order: WT > > H116Q (decreased by 4-20 fold) > H116A (decreased by 20-700 fold) ≥ H116N (decreased by 6-800 fold). The maximum effect was observed on H116N against penicillin G, whereas ampicillin was not hydrolyzed at all. The fold-increase of Km values, which informs the weakening of substrate binding, were: H116A by 5-45 fold; H116N by 6-100 fold; H116Q by 2-10 fold. Molecular dynamics simulations suggested that the Zn1 site mutations affected the positions of Zn2 and the bridging hydroxide, by 0.8 to 1.2 Å, with the largest changes of ~1.5 Å observed on Zn2 ligand C221. A native hydrogen bond between H118 and D236 was disrupted in the H116N and H116Q mutants, which led to increased flexibility of loop 10. Consequently, residue N233 was no longer maintained at an optimal position for substrate binding. H116 connected loop 7 across Zn1 to loop 10, thereby contributed to the overall integrity. This work revealed that the H116-Zn1 interaction plays a critical role in defining the substrate-binding site. From these results, it can be inferred that inhibition strategies targeting the zinc ions may be a new direction for drug development.


Asunto(s)
Antibacterianos , beta-Lactamasas , Antibacterianos/farmacología , Hidrólisis , Ligandos , Zinc/metabolismo , beta-Lactamasas/química
9.
J Biol Chem ; 298(8): 102235, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35798142

RESUMEN

FtsQBL is a transmembrane protein complex in the divisome of Escherichia coli that plays a critical role in regulating cell division. Although extensive efforts have been made to investigate the interactions between the three involved proteins, FtsQ, FtsB, and FtsL, the detailed interaction mechanism is still poorly understood. In this study, we used hydrogen-deuterium exchange mass spectrometry to investigate these full-length proteins and their complexes. We also dissected the structural dynamic changes and the related binding interfaces within the complexes. Our data revealed that FtsB and FtsL interact at both the periplasmic and transmembrane regions to form a stable complex. Furthermore, the periplasmic region of FtsB underwent significant conformational changes. With the help of computational modeling, our results suggest that FtsBL complexation may bring the respective constriction control domains (CCDs) in close proximity. We show that when FtsBL adopts a coiled-coil structure, the CCDs are fixed at a vertical position relative to the membrane surface; thus, this conformational change may be essential for FtsBL's interaction with other divisome proteins. In the FtsQBL complex, intriguingly, we show only FtsB interacts with FtsQ at its C-terminal region, which stiffens a large area of the ß-domain of FtsQ. Consistent with this, we found the connection between the α- and ß-domains in FtsQ is also strengthened in the complex. Overall, the present study provides important experimental evidence detailing the local interactions between the full-length FtsB, FtsL, and FtsQ protein, as well as valuable insights into the roles of FtsQBL complexation in regulating divisome activity.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas de Escherichia coli , Escherichia coli , Proteínas de la Membrana , Proteínas de Ciclo Celular/metabolismo , División Celular , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de la Membrana/metabolismo , Conformación Proteica
10.
Invest New Drugs ; 40(5): 895-904, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35857203

RESUMEN

Gastric cancer is one of the most common malignant solid tumors in the world, especially in Asia with high mortality due to a lack of effective treatment. The potential usage of the newly constructed arginine-depleting enzyme-mono-PEGylated Bacillus caldovelox arginase mutant (BCA-M-PEG20), an effective drug against multiple cancer cell lines such as cervical and lung cancers, for the treatment of gastric cancer was demonstrated. Our results indicated that BCA-M-PEG20 significantly inhibited argininosuccinate synthetase (ASS)-positive gastric cancer cells, MKN-45 and BGC-823, while another arginine-depleting enzyme, arginine deiminase (ADI, currently under Phase III clinical trial), failed to suppress the growth of gastric cancer cells. In vitro studies demonstrated that BCA-M-PEG20 inhibited MKN-45 cells by inducing autophagy and cell cycle arrest at the S phase under 0.58 U/mL (IC50 values). Significant caspase-dependent apoptosis was induced in MKN-45 after the treatment with 2.32 U/mL of BCA-M-PEG20. In vivo studies showed that administrations of BCA-M-PEG20 at 250 U/mouse twice per week significantly suppressed about 50% of tumor growth in the MKN-45 gastric cancer xenograft model. Taken together, BCA-M-PEG20 demonstrated a superior potential to be an anti-gastric cancer drug.


Asunto(s)
Neoplasias Pulmonares , Neoplasias Gástricas , Animales , Apoptosis , Arginasa/farmacología , Arginina , Autofagia , Puntos de Control del Ciclo Celular , Línea Celular Tumoral , Geobacillus , Humanos , Hidrolasas/farmacología , Hidrolasas/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Ratones , Polietilenglicoles/farmacología , Polietilenglicoles/uso terapéutico , Neoplasias Gástricas/tratamiento farmacológico
11.
RSC Adv ; 12(10): 6248-6254, 2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35424586

RESUMEN

A series of quinolizinium-based fluorescent reagents were prepared by visible light-mediated gold-catalyzed cis-difunctionalization between quinolinium diazonium salts and electron-deficient alkyne-linked phenylethynyl trimethylsilanes. The electron-deficient alkynyl group of the quinolizinium-based fluorescent reagents underwent nucleophilic addition reaction with the sulfhydryl group on cysteine-containing peptides and proteins. The quinolizinium-based fluorescent reagents were found to function as highly selective reagents for the modification of cysteine-containing peptides and proteins with good to excellent conversions (up to 99%). Moreover, the modified BCArg mutants bearing cationic quinolizinium compounds 1b, 1d, 1e and 1h exhibit comparable activity in enzymatic and cytotoxicity assays to the unmodified one.

12.
Mol Cancer Ther ; 20(11): 2218-2227, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34433661

RESUMEN

Recent studies have revealed that targeting amino acid metabolic enzymes is a promising strategy in cancer therapy. Acute myeloid leukemia (AML) downregulates the expression of argininosuccinate synthase (ASS1), a recognized rate-limiting enzyme for arginine synthesis, and yet displays a critical dependence on extracellular arginine for survival and proliferation. This dependence on extracellular arginine, also known as arginine auxotrophy, suggests that arginine deprivation would be a treatment strategy for AML. NEI-01, a novel arginine-depleting enzyme, is capable of binding to serum albumin to extend its circulating half-life, leading to a potent anticancer activity. Here we reported the preclinical activity of NEI-01 in arginine auxotrophic AMLs. NEI-01 efficiently depleted arginine both in vitro and in vivo NEI-01-induced arginine deprivation was cytotoxic to arginine auxotrophic AML cells through induction of cell-cycle arrest and apoptosis. Furthermore, the potent anti-leukemia activities of NEI-01 were observed in three different types of mouse models including human cell line-derived xenograft, mouse cell line-derived homografts in syngeneic mice and patient-derived xenograft. This preclinical data provide strong evidence to support the potential use of NEI-01 as a therapeutic approach in AML treatment.


Asunto(s)
Arginina/metabolismo , Hormonas Hipotalámicas/metabolismo , Leucemia Mieloide Aguda/tratamiento farmacológico , Fragmentos de Péptidos/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Leucemia Mieloide Aguda/patología , Ratones
13.
J Biol Chem ; 297(2): 100980, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34302811

RESUMEN

ß-Lactamase inhibitory protein (BLIP) consists of a tandem repeat of αß domains conjugated by an interdomain loop and can effectively bind and inactivate class A ß-lactamases, which are responsible for resistance of bacteria to ß-lactam antibiotics. The varied ability of BLIP to bind different ß-lactamases and the structural determinants for significant enhancement of BLIP variants with a point mutation are poorly understood. Here, we investigated the conformational dynamics of BLIP upon binding to three clinically prevalent class A ß-lactamases (TEM1, SHV1, and PC1) with dissociation constants between subnanomolar and micromolar. Hydrogen deuterium exchange mass spectrometry revealed that the flexibility of the interdomain region was significantly suppressed upon strong binding to TEM1, but was not significantly changed upon weak binding to SHV1 or PC1. E73M and K74G mutations in the interdomain region improved binding affinity toward SHV1 and PC1, respectively, showing significantly increased flexibility of the interdomain region compared to the wild-type and favorable conformational changes upon binding. In contrast, more rigidity of the interfacial loop 135-145 was observed in these BLIP mutants in both free and bound states. Consistently, molecular dynamics simulations of BLIP exhibited drastic changes in the flexibility of the loop 135-145 in all complexes. Our results indicated for the first time that higher flexibility of the interdomain linker, as well as more rigidity of the interfacial loop 135-145, could be desirable determinants for enhancing inhibition of BLIP to class A ß-lactamases. Together, these findings provide unique insights into the design of enhanced inhibitors.


Asunto(s)
Bacterias/enzimología , Proteínas Bacterianas/metabolismo , Farmacorresistencia Bacteriana , Simulación de Dinámica Molecular , Inhibidores de beta-Lactamasas/metabolismo , beta-Lactamasas/metabolismo , Secuencia de Aminoácidos , Bacterias/química , Bacterias/efectos de los fármacos , Proteínas Bacterianas/química , Unión Proteica , Dominios Proteicos , Elementos Estructurales de las Proteínas , Inhibidores de beta-Lactamasas/química , beta-Lactamasas/química
15.
Cancer Lett ; 502: 58-70, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33429005

RESUMEN

Extensive studies have shown that cancer cells have specific nutrient auxotrophy and thus have much a higher demand for certain nutrients than normal cells. Amino acid deprivation has attracted much attention in cancer therapy with positive outcomes from clinical trials. Arginine, as one of the conditionally essential amino acids, plays a pivotal role in cellular division and metabolism. Since many types of cancer cells exhibit decreased expression of argininosuccinate synthetase and/or ornithine transcarbamylase, they are auxotrophic for arginine, which makes arginine deprivation an accessible choice for cancer treatment. Arginine deiminase (ADI) and human arginase (hArg) are the two major protein drugs used for arginine deprivation and are undergoing many clinical trials. However, the clinical application of ADI and hArg is facing some common problems, including their short half-lives, immunogenicity and inconsistent production, which underlines the importance of improving these drugs using protein engineering techniques. Thus, we systematically review the latest studies of protein engineering and anti-cancer studies based on in vitro, in vivo and clinical models of ADI and hArg, and we include the latest studies on drug combinations consisting of ADI/hArg with chemotherapeutic drugs.


Asunto(s)
Arginasa/uso terapéutico , Arginina/deficiencia , Hidrolasas/uso terapéutico , Neoplasias/tratamiento farmacológico , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Ensayos Clínicos como Asunto , Diseño de Fármacos , Humanos , Hidrolasas/farmacología , Neoplasias/metabolismo
16.
RSC Adv ; 11(29): 18122-18130, 2021 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-35480164

RESUMEN

A series of isatin derivatives bearing three different substituent groups at the N-1, C-3 and C-5 positions of the isatin scaffold were systematically designed and synthesized to study the structure-activity relationship of their inhibition of bacterial peptidoglycan glycosyltransferase (PGT) activity and antimicrobial susceptibility against S. aureus, E. coli and methicillin-resistant Staphylococcus aureus (MRSA (BAA41)) strains. The substituents at these sites are pointing towards three different directions from the isatin scaffold to interact with the amino acid residues in the binding pocket of PGT. Comparative studies of their structure-activity relationship allow us to gain better understanding of the direction of the substituents that contribute critical interactions leading to inhibition activity against the bacterial enzyme. Our results indicate that the modification of these sites is able to maximize the antimicrobial potency and inhibitory action against the bacterial enzyme. Two compounds show good antimicrobial potency (MIC = 3 µg mL-1 against S. aureus and MRSA; 12-24 µg mL-1 against E. coli). Results of the inhibition study against the bacterial enzyme (E. coli PBP 1b) reveal that some compounds are able to achieve excellent in vitro inhibitions of bacterial enzymatic activity (up to 100%). The best half maximal inhibitory concentration (IC50) observed among the new compounds is 8.9 µM.

17.
Methods Mol Biol ; 2199: 13-22, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33125642

RESUMEN

With a growing amount of structural information of proteins, deciphering the linkage between the structure and function of these proteins is the next important task in structural genomics. To characterize the function of an enzyme at molecular level, placing a reporter on the active site of an enzyme can be a strategy to examine the dynamics of the interaction between enzyme and its substrate/inhibitor. In this chapter, we describe an approach of active-site labeling of enzyme for this purpose. Provided with the fabrication of a fluorescein-labeled AmpC ß-lactamase as an example, we herein depict the methodology of a structure-based selection of the location in an enzyme's active site for bioconjugation and the preparation of the active-site labeled enzyme.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Fluoresceínas/química , beta-Lactamasas/química , beta-Lactamasas/genética , Dominio Catalítico , Ingeniería de Proteínas
18.
Methods Mol Biol ; 2199: 277-288, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33125656

RESUMEN

Molecular dynamics (MD) simulation is a powerful method of investigating the interaction between molecular species. Defining the mechanical properties and topologies for all components involved is critical. While parameters for proteins are well established, those for the wide range of ligands and substrates are not. Here we introduce a very useful service which is designed for small organic molecules. We describe a protocol to extend this tool to beyond its current size (200 atoms) and formal charge (2+ to 2-) limits.


Asunto(s)
Simulación de Dinámica Molecular , Proteínas/química , Programas Informáticos , Ligandos
19.
Methods Mol Biol ; 2199: 289-313, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33125657

RESUMEN

Fluorescent labeling of protein has been widely used in microbiology for detection and analysis. Molecular dynamics simulations provide vital supporting information for predictions and interpretations of experimental results. While force fields for proteins with regular amino acids are readily available, parameters for covalently attached fluorophores have to be incorporated into these force fields before they can be used for simulations. In this chapter, we shall discuss the methods to parameterize a fluorescent probe (fluorescein) attached to a cysteine, as a modified residue, for performing simulations with GROMACS.


Asunto(s)
Fluoresceína/química , Simulación de Dinámica Molecular , Proteínas/química , Programas Informáticos
20.
PLoS One ; 15(10): e0241594, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33125437

RESUMEN

ß-Lactam antibiotic detection has significant implications in food safety control, environmental monitoring and pharmacokinetics study. Here, we report the development of two BADAN-conjugated ß-lactamases, E166Cb and E166Cb/N170Q, as sensitive biosensors for ß-lactam antibiotic detection. These biosensors were constructed by coupling an environment-sensitive BADAN probe onto location 166 at the active site of the PenP ß-lactamase E166C and E166C/N170Q mutants. They gave fluorescence turn-on signals in response to ß-lactam antibiotics. Molecular dynamics simulation of E166Cb suggested that the turn-on signal might be attributed to a polarity change of the microenvironment of BADAN and the removal of the fluorescence quenching effect on BADAN exerted by a nearby Tyr-105 upon the antibiotic binding. In the detection of four ß-lactams (penicillin G, penicillin V, cefotaxime and moxalactam), both E166Cb and E166Cb/N170Q delivered signal outputs in an antibiotic-concentration dependent manner with a dynamic range spanning from 10 nM to 1 µM. Compared to E166Cb, E166Cb/N170Q generally exhibited more stable signals owing to its higher deficiency in hydrolyzing the antibiotic analyte. The overall biosensor performance of E166Cb and E166Cb/N170Q was comparable to that of their respective fluorescein-modified counterparts, E166Cf and E166Cf/N170Q. But comparatively, the BADAN-conjugated enzymes showed a higher sensitivity, displayed a faster response in detecting moxalactam and a more stable fluorescence signals towards penicillin G. This study illustrates the potential of BADAN-conjugated ß-lactamases as biosensing devices for ß-lactam antibiotics.


Asunto(s)
2-Naftilamina/análogos & derivados , Antibacterianos/análisis , Técnicas Biosensibles/métodos , Enzimas Inmovilizadas/química , beta-Lactamasas/química , beta-Lactamas/análisis , 2-Naftilamina/química , Simulación de Dinámica Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA